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Welcome to the inaugural issue of the International 
Journal of Electrical and Computer Engineering Systems 
(IJECES). The journal is published by the Faculty of 
Electrical Engineering, Josip Juraj Strossmayer University 
of Osijek. Through synergy, over the past 30 years of 
scientific, professional and educational activities, Faculty 
of Electrical Engineering in Osijek has been a significant 
institution in the field of research and higher education 
with 140 employees, out of whom there are more than 
90 researchers, more than 20 associates, and more than 
2300 students enrolled in 8 courses of study in the 
fields of electrical and computer engineering, including 
Bachelor and Master level study programs, postgraduate 
specialist study programs, and PhD study programs. 
Participation in numerous scientific and professional 
research activities and projects, international 
cooperation with about 25 scientific and research 
institutions in Croatia and abroad, and the knowledge 
that, in addition to application, publication of research 
results plays a very important role in scientific-research 
work, were the reasons taken into consideration in the 
establishment of our journal.          

The International Journal of Electrical and Computer 
Engineering Systems publishes original scientific 
research in the form of full papers, case studies, reviews 
and surveys. It covers theory and application of electrical 
and computer engineering, synergy of computer 
systems and computational methods with electrical and 
electronic systems, as well as interdisciplinary research. 
Topics of interest include, but are not limited to: Power 
systems, Renewable electricity production, Power 
electronics, Electrical drives, Industrial electronics, 
Communication systems, Advanced modulation 
techniques, RFID devices and systems, Signal and data 
processing, Image processing, Multimedia systems, 
Microelectronics, Instrumentation and measurement, 
Control systems, Robotics, Modeling and simulation, 
Modern computer architectures, Computer networks, 
Embedded systems, High-performance computing, 
Parallel and distributed computer systems, Human-
computer systems, Intelligent systems, Multi-agent 
and holonic systems, Real-time systems, Software 
engineering, Internet and web applications and systems, 
Applications of computer systems in engineering and 
related disciplines, Mathematical models of engineering 
systems, Engineering management, and Engineering 
education. 

With the inaugural issue and our first five articles 
therein, we encompassed many different topics in the 

field of electrical and computer engineering systems. 
The first article, by S. Didas, G. Steidl and J. Weickert, 
investigates the relations between wavelet shrinkage and 
integro-differential equations for image simplification 
and denoising in a discrete case. Authors extend 
ideas that a wavelet transform can be understood as a 
derivative operator in connection with convolution with 
a smoothing kernel. By using tensor product wavelets 
and special shrinkage rules, this approach is extended 
to more than one spatial dimension. The second article, 
by D. Vučinić, addresses scientific visualization and 
corresponding tools which, by combined use, eliminate 
many well known problems of sharing, accessing and 
exchanging design models and the related information 
content. It is shown that object-oriented methodology 
is a well adapted approach to stream the software 
development process of future engineering applications. 
In the third article, by S. Rupčić, V. Mandrić and D. Vinko, 
the radiation pattern of two experimental models of 
circular waveguide antenna arrays on spherical surface is 
obtained experimentally and compared with theoretical 
patterns. Analysis was made by means of the developed 
moment method (MoM) program. The fourth article, 
by S. Janos, G. Martinović and I. Matijevics, describes 
a wireless sensor networks system in greenhouse 
environment. Developed and optimized autonomous 
measuring robot system and algorithms enable 
monitoring of all necessary parameters for creating 
optimal environment in the greenhouse. The fifth article, 
by C. Govindaraju and K. Baskaran, discusses a power 
loss minimization technique for a cascaded multilevel 
inverter using a hybrid carrier based space vector 
modulation. This article combines the features of carrier 
based space vector modulation and the fundamental 
frequency modulation strategy and this is implemented 
by using a DSP and a CPLD. The inverter offers lower 
harmonic distortion and operates with equal thermal 
stress among the power devices. 

Finally, I would like to thank the authors for their 
valuable contributions and the reviewers for their time 
and efforts in providing many valuable suggestions and 
comments. We believe that with the joint efforts IJECES 
will become a recognizable point of reference when it 
comes to publication of research results.   

This inaugural issue of IJECES is dedicated to the 32nd 
anniversary of the Faculty of Electrical Engineering, a 
constituent part of Josip Juraj Strossmayer University 
of Osijek.
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Abstract – We investigate the relations between wavelet shrinkage and integrodifferential equations for image simplification 
and denoising in the discrete case. Previous investigations in the continuous one-dimensional setting are transferred to the discrete 
multidimentional case. The key observation is that a wavelet transform can be understood as a derivative operator in connection 
with convolution with a smoothing kernel. In this paper, we extend these ideas to a practically relevant discrete formulation with 
both orthogonal and biorthogonal wavelets. In the discrete setting, the behaviour of smoothing kernels for different scales is more 
complicated than in the continuous setting and of special interest for the understanding of the filters. With the help of tensor product 
wavelets and special shrinkage rules, the approach is extended to more than one spatial dimension. The results of wavelet shrinkage 
and related integrodifferential equations are compared in terms of quality by numerical experiments. 
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1. INTRODUCTION

Since the beginning of the 1990s, wavelet shrinkage 
and nonlinear diffusion filtering are two established 
classes of methods for signal and image simplication 
and denoising [36, 12, 27, 38].

The idea behind wavelet shrinkage is to denoise an 
image by performing very simple pointwise opera-
tions in a suitable multiresolution representation of the 
data [36]. This representation is obtained by using the 
wavelet transform. Depending on the application, the 
use of different types of wavelets might be suitable. Via 
the concept of multiresolution analysis [19, 20, 22] the 
shrinkage technique is closely related to earlier signal 
processing methods like filter banks and subband cod-
ing [5, 6, 23, 29, 34, 33].

Nonlinear diffusion filtering simplifies and denoises 
an image by solving a partial dierential equation which 
is typically done without changing the spatial repre-
sentation of the image. In this setting, first or higher 

order derivatives of the image are used to formalise the 
desired smoothness and to detect and eliminate the 
noise [27, 38, 18, 10].

The close relationship between both methods is em-
phasized, for example, by the fact that wavelet shrink-
age can also be understood as energy minimisation [3, 
4, 2]. This fact already relates it to the context of scale-
spaces [16, 40, 27, 1] and methods based on partial 
differential equations (PDEs). In the discrete setting, 
translationally invariant wavelet shrinkage on the fin-
est scale is even equivalent to total variation regulariza-
tion and diffusion [30].

The connections between multiscale wavelet shrink-
age and corresponding integrodifferential equations in 
the continuous one-dimensional setting have been the 
topic of an earlier publication by the authors [9]. The 
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goal of this paper is to transfer the ideas and results from 
the continuous to the practically relevant discrete set-
ting. Since the dilation operation on the wavelets can 
only be approximated on a discrete grid, the formulation 
is slightly more technical here. Moreover, we will not re-
strict ourselves to orthogonal wavelets, but also have a 
look at biorthogonal ones allowing for more general in-
tegrodifferential equations. Preliminary results concern-
ing this transfer have been presented at a conference [8]. 
In addition, we will transfer the one-dimensional case 
to two dimensions using tensor product wavelets and 
special shrinkage rules to increase rotational invariance. 
We also discuss in detail the behavior of the appearing 
smoothing kernels at different scales. Numerical experi-
ments will be shown to compare the resulting methods 
in terms of denoising quality.

This paper is organised as follows: Section 2 intro-
duces some notations used throughout the paper. Sec-
tions 3 and 4 describe classical wavelet shrinkage and 
nonlinear diffusion filtering in a discrete setting. The 
factorisation of a discrete wavelet into a convolution 
kernel and a derivative approximation is derived in Sec-
tion 5. In Section 6, this idea is used to derive relations 
between discrete wavelet shrinkage and integrodif-
ferential equations. Section 7 shows how these ideas 
can be generalised two higher dimensions. Numerical 
experiments in Section 8 display the behaviour of the 
presented filters in practice. The paper is concluded 
with a summary in Section 9.

2. PRELIMINARIES AND NOTATIONS

Let us start with the notations used throughout this 
paper. Let

(1)

be a real signal of infinite length. Then

denote the  Fourier- and  the z-transform of f, respec-
tively. The importance of the z-transform in this context 
results from the fact that it allows for an easy formula-
tion of convolutions as multiplications of formal Lau-
rent series. More precisely, the k-th component of the  
convolution a * f given by

(2)

(3)

corresponds to the coefficient of z-k in A(z)F(z).

In practice, we will work with signals of finite length N 
and assume N-periodic extensions of the signals. Then 
the k-th component of the cyclic convolution a * f of 
vectors                         given by a,f RN!

(4)

corresponds to the coefficient of z-k in A(z)F(z) mod 
zN - 1. On the other hand, the cyclic convolution of 
                     can be expressed as multiplication of f with 
the circulant matrix corresponding to a [15]:
a,f RN!

(5)

Each circulant matrix can be written as

(6)

denotes the so-called basic circulant permutation ma-
trix. Multiplication with C performs a periodic left-shift 
of a vector.

In the following we will often use some vector 
a RN!  in connection with its corresponding N-di-
mensional circulant matrix A a C

j 0

N 1

j

j
=

=

-/  and its z-
transform A(z) a z

j 0

N 1

j

j
=

=

- -/ . Circulant N x N-matrices 
can be diagonalised by the same matrix, namely the 
N-th Fourier matrix. Hence, multiplication of circulant 
matrices is commutative.

3. DISCRETE WAVELET SHRINKAGE

In this section, we review the three steps of wavelet 
shrinkage in the discrete setting [36]: Figure 1 shows 
the corresponding filter bank for wavelet shrinkage on 
the finest scale, where the z-transform notation of the 
filters is used.

Fig. 1. Filter bank for wavelet shrinkage on the 
finest scale.
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1. Analysis: In the analysis step, the initial sig-
nal is transferred to a wavelet coefficient representa-
tion. This decomposition is done with the help of the 
analysis filters h0 and h1 which can be obtained as scal-
ing coefficients of the corresponding scaling function. 
Filters h0 and h1 play the role of a low-pass filter and 
the corresponding high-pass filter, respectively. In ad-
dition, both channels are sampled down by leaving out 
all components with an odd index. This is indicated in 
the filter bank with the symbol .2. 

2. Shrinkage: The wavelet coefficients of the 
signal are shrunken towards zero in this step while the 
low-frequency components are kept. This is modelled 
as applying a nonlinear  shrinkage function S:R R"  
to each of the wavelet coefficients. 

3. Synthesis: In this step, the resulting signal is 
synthesised from the wavelet coefficients. First, upsam-
pling is used by introducing zeros between each pair of 
neighbouring signal components. This is written as -2 
here. For the synthesis, the filter pair g0 and g1 is used.

We note that the analysis filters h0 and h1 are mirrored 
in our notation. To ensure a perfect reconstruction of 
the signal, the analysis and the synthesis filters have to 
satisfy the following properties, [35, 31, 21]:

(7)

(8)

For filters of finite length, one can further show (see 
[35, p. 120] or [21, Theorem 7.9], for example) that there 
are numbers  and k Z!  such that

(9)

For simplicity, without loss of generality, we assume 
that 2=a  and k = 0. This gives us simple relations be-
tween analysis and synthesis filters:

(10)

It immediately follows that

(11)

 These equations hold for the general biorthogonal 
case with filters of finite length. In order to have ortho-
normal filters, we have an additional requirement that

(12)

which allows us to determine all four filters with one 
prototype.

To make wavelet methods compatible to PDE ap-
proaches we need a translation invariant wavelet 
shrinkage process. This can be obtained by skipping 
the down- and up-sampling procedure as shown in 
Figure 1. For the synthesis, the result has to be multi-
plied by 1/2 at each scale. This is also known as  algo-
rithme à trous, cf. Holschneider et al. [14, 21]. We see 
that the analysis and synthesis filters are widened by 
inserting zeros into the filters

Fig. 2. Filter bank for translational invariant 
wavelet shrinkage with multiple scales using the 

algorithme  à trous

4. DISCRETE HIGHER ORDER NONLINEAR 
DIFFUSION

Next, let us have a look at discretisations of nonlinear 
diffusion which we will need in this section.

Here we use a discretisation of the nonlinear higher 
order diffusion equation

(13)

 with initial condition u( ,0) f$ =  as described in 
[10, 11], for example. Here, x

p2  denotes the partial de-
rivative of order p with respect to the variable x.

We restrict our attention to N-periodic signals on the 
interval [0, N - 1]. To discretise this equation, we consid-
er the sampled version u RN!  of u at an equidistant 
grid {jh : j = 0, ..., N - 1} with spatial step size h = 1.

To approximate the spatial derivatives in (13), we 
use a forward difference as approximation of the first 
derivative. It can be expressed in matrix-vector form 
as Dux2 + , where
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goal of this paper is to transfer the ideas and results from 
the continuous to the practically relevant discrete set-
ting. Since the dilation operation on the wavelets can 
only be approximated on a discrete grid, the formulation 
is slightly more technical here. Moreover, we will not re-
strict ourselves to orthogonal wavelets, but also have a 
look at biorthogonal ones allowing for more general in-
tegrodifferential equations. Preliminary results concern-
ing this transfer have been presented at a conference [8]. 
In addition, we will transfer the one-dimensional case 
to two dimensions using tensor product wavelets and 
special shrinkage rules to increase rotational invariance. 
We also discuss in detail the behavior of the appearing 
smoothing kernels at different scales. Numerical experi-
ments will be shown to compare the resulting methods 
in terms of denoising quality.

This paper is organised as follows: Section 2 intro-
duces some notations used throughout the paper. Sec-
tions 3 and 4 describe classical wavelet shrinkage and 
nonlinear diffusion filtering in a discrete setting. The 
factorisation of a discrete wavelet into a convolution 
kernel and a derivative approximation is derived in Sec-
tion 5. In Section 6, this idea is used to derive relations 
between discrete wavelet shrinkage and integrodif-
ferential equations. Section 7 shows how these ideas 
can be generalised two higher dimensions. Numerical 
experiments in Section 8 display the behaviour of the 
presented filters in practice. The paper is concluded 
with a summary in Section 9.
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the circulant matrix corresponding to a [15]:
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In this section, we review the three steps of wavelet 
shrinkage in the discrete setting [36]: Figure 1 shows 
the corresponding filter bank for wavelet shrinkage on 
the finest scale, where the z-transform notation of the 
filters is used.

Fig. 1. Filter bank for wavelet shrinkage on the 
finest scale.

f (Z): {(f ) f < }2
n n

n n

2
Z, 3! ;=

3

3
!

=-
/

(a * f) : a fk
j j

k jZ=
!

-/

(a * f) : a fk j 0

N 1

j
(k j)modN=

=

-
-/

A :

a

a

a

a

a

a

a

a

a

a

a

a

...

...

...

...

a

a

a

a

R .

0

N 1

N 2

1

1

0

N 1

2

2

1

0

3

N 1

N 2

N 3

0

N,N

h h h j h

!=

-

- -

-

-

-

J

L

K
K
K
K
KK

N

P

O
O
O
O
OO

f( ) : f exp( in )

and F(z) : f z
n

n

n
n

n

= -

=

~ p
3

3

3

3

=-

=-

-

t /
/and

A : a C ,

C :

0

0

0

1

1

0

0

0

0

1

0

0

...

...

...

...

0

0

1

0

w h e re

j 0

N 1

j

j

h h h j h

=

=

=

-

J

L

K
K
K
K
KK

N

P

O
O
O
O
OO

/

where

7Volume 1, Number 1, May 2010

1. Analysis: In the analysis step, the initial sig-
nal is transferred to a wavelet coefficient representa-
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ing coefficients of the corresponding scaling function. 
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Next, let us have a look at discretisations of nonlinear 
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backward difference. Further Dp and (DT)pserve as 
approximations of p-th derivatives with an appropri-
ate sign. For time discretisation we use a simple Euler 
forward scheme. Then the discrete iterative scheme 
can be written as

The diagonal matrix 
(u ): diag(| (D u ) |)D

k p k
j j 0,N 1p =U = -  stands for mul-

tiplication by the nonlinear diffusivity function. In 
our computations we use the Perona-Malik function 
[27] defined as

(16)

See for example [26] for a list of other possible dif-
fusivity functions.

5. DISCRETE WAVELETS AND CONVOLUTION 
KERNELS

In this section, we formulate the key idea of factoriz-
ing discrete wavelets into derivative approximations of 
smoothing kernels. We make the assumption that the 
wavelet has p vanishing moments to relate the wavelet 
transform to an approximation of the p-th derivative. 
In the discrete setting, this condition reads: A signal 
f (Z)2,!  is said to have p N!  vanishing moments if

(17)

Let us now factorise the z-transform of a wavelet with 
p vanishing moments such that we obtain a derivative 
approximation filter and a convolution or smoothing 
kernel. Since the number of vanishing moments is di-
rectly connected with regularity properties, such fac-
torizations are often used in the design of wavelets (see 
[7, 31, 21, 17], for example). It should also be noticed 
that the number of vanishing moments of the filter 
coefficients is the same as the number of (continuous) 
vanishing moments of the continuous wavelet func-
tion; see [21, Theorem 7.4].

Proposition 5.1  (Wavelet Filter Factorisation) 

Let f (Z)2,!  be a filter of finite length and p vanish-
ing moments. Then its z-transform can be decomposed as

 where K is the z-transform of the corresponding filter k 
which will be understood as a smoothing kernel. 

Although it is standard in wavelet analysis, we at-
tach a simple proof in order to make the paper more 
self-contained:

(18)

(19)

which is the j-th moment of f times the nonzero con-
stant (-i)j. Our assumption about f then reads f 0(j)

=t  
for j {0,p 1}! - . This means the Fourier transform 
of f is a trigonometric polynomial which has a zero of 
order p in 0. Thus it can be factorised as

with a suitable (Laurent-) polynomial K. Replacing 
exp(i )p  by z directly yields the desired factorisation  
F(z) = (z - 1)pK(z) of the z-transform.

With the help of this proposition, we can understand 
the convolution with a wavelet as a derivative approxi-
mation of a presmoothed signal. We remember that 
z - 1 is the z-transform of the finite difference matrix DT 
approximating the negated first derivative. Thus (z - 1)p 
can be used as approximation of (-1)p times the p-th de-
rivative. This reasoning of understanding the wavelet as 
a derivative of a smoothing kernel is in accordance with 
the approach in the previous section and the continu-
ous considerations in [9]. For details on such factoriza-
tions, see [21, Section 7.2] for orthogonal wavelets and 
[21, Section 7.4.2] for the biorthogonal case, for exam-
ple. Let p and q be the number of vanishing moments 
of our analysis and synthesis highpass filters H1 and G1. 
Then Proposition 5.1 allows us to write the filters as

(20)

where KH and KG are the z-transforms of two smoothing 
kernels kH and kG of the synthesis and analysis wavelet. 
For orthogonal wavelets, we simply have KH(z) = KG(z) 
and p = q. With the two relations (10) and (11) between 
low- and highpass we see that for the lowpass filters H0 
and G0, the following relations hold:
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To make these formulae a bit more intuitive, let us 
now give some examples of kernels KH and KG for com-
monly used orthogonal wavelets on the finest scale:

Example 5.2 (Discrete Wavelets and Convolution Kernels) 

(a) Haar Wavelet: For the discrete Haar wavelet, we 

have H (z)
2

1 (z 1)1 = - . The kernel on the finest scale is 

in this case just a scalar factor K (z)
2

1H
= .

( ) ( )

( ) ( ) .

z z z

K z K z

1 1 ( )q p p

r

r p q

G

r

H

1 2 1 1

0

2 1

2

0

2 2r

1 1

1

$

$

= - -

-

v

v

- - + -

=

- +

=

- -

v v

v

- -

-

^ `h j

%
/

 which can be factorised as  
leading to
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Let us briefly say a few words about the differences 
between our idea and previous approaches to relations 
between shrinkage on the finest scale and nonlinear 
diffusion. In contrast to the idea in this paper, Weick-
ert et al. [39] have directly considered the wavelet fil-
ter H1 as stencil for a derivative approximation. With a 
Taylor expansion, one can directly prove that any filter 
with p vanishing moments yields an approximation of 
the p-th derivative up to a constant factor. This works 
well as long as only the finest scale is considered, but 
it does not help to explain what happens on coarser 
scales. Here, we try to model coarser scales by separat-
ing the derivative approximation from the smoothing 
kernel which yields a coarse scale approximation of our 
signal. In the continuous setting considered in [9], the 
smoothing kernel is a function for which the scaling 
operation is invertible without loss of information. In 
contrast to this, the discrete wavelets on coarser scales 
treated in this paper can change their appearance due 
to discretisation effects.

Following [35, Section 3.3], we introduce wavelets on 
coarser scales: starting from the filters G0 and G1 on the 
finest scale, we define the wavelet filters G ( )

0
v  and G ( )

1
v  

on coarser scales N!v  as

(26)

and use the same formulae for H ( )
0
v  and H ( )

1
v .

The exponents 2r come from the fact that the algo-

Fig. 3. Filter bank for translation invariant wavelet 
shrinkage, written with multiple channels.

Now we are interested in the changes of the shape 
of the convolution kernels corresponding to the wave-
lets when the scale increases. Our starting point are the 
relations (26), and we firstly consider the scaling coef-
ficients using the factorisation (23):

(27)

We see that the scaling filter on larger scales can be 
decomposed into four parts: The sign given by ( 1) p

-
v  

and the pure shift z( )2 1-
v

 do not change the shape of the 
convolution kernel. This shape is determined by the right-
most two factors: The second one is a product of the ker-
nels kH with alternating signs and with inserted zeros. This 
is actually the wavelet-dependent part. The first factor is 
independent of the wavelet: It is the p times convolution 
of a box filter of width 2v  with itself. This can be under-
stood as a discrete B-spline kernel of order p.

Let us see how this decomposition looks for the 
wavelet coefficients:
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(30)

(31)

(b) Daubechies Wavelets: The Daubechies wavelet 
[7] with p = 2 is represented by the filter
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rithme à trous inserts the corresponding number of 
zeros between two samples of the filter at scale r. In ad-
dition, we have to multiply the z-transforms of all filters 
lying on the path from the input to the middle of the 
filter bank for Hi in Figure 1, or from the middle to the 
output for Gi, i = 0,1.

Having these formulae at hand we can rewrite the 
filter bank in Figure 1 with m + 1 different paths as 
shown in Figure 3.

and
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backward difference. Further Dp and (DT)pserve as 
approximations of p-th derivatives with an appropri-
ate sign. For time discretisation we use a simple Euler 
forward scheme. Then the discrete iterative scheme 
can be written as

The diagonal matrix 
(u ): diag(| (D u ) |)D

k p k
j j 0,N 1p =U = -  stands for mul-

tiplication by the nonlinear diffusivity function. In 
our computations we use the Perona-Malik function 
[27] defined as

(16)

See for example [26] for a list of other possible dif-
fusivity functions.

5. DISCRETE WAVELETS AND CONVOLUTION 
KERNELS

In this section, we formulate the key idea of factoriz-
ing discrete wavelets into derivative approximations of 
smoothing kernels. We make the assumption that the 
wavelet has p vanishing moments to relate the wavelet 
transform to an approximation of the p-th derivative. 
In the discrete setting, this condition reads: A signal 
f (Z)2,!  is said to have p N!  vanishing moments if

(17)

Let us now factorise the z-transform of a wavelet with 
p vanishing moments such that we obtain a derivative 
approximation filter and a convolution or smoothing 
kernel. Since the number of vanishing moments is di-
rectly connected with regularity properties, such fac-
torizations are often used in the design of wavelets (see 
[7, 31, 21, 17], for example). It should also be noticed 
that the number of vanishing moments of the filter 
coefficients is the same as the number of (continuous) 
vanishing moments of the continuous wavelet func-
tion; see [21, Theorem 7.4].

Proposition 5.1  (Wavelet Filter Factorisation) 

Let f (Z)2,!  be a filter of finite length and p vanish-
ing moments. Then its z-transform can be decomposed as

 where K is the z-transform of the corresponding filter k 
which will be understood as a smoothing kernel. 

Although it is standard in wavelet analysis, we at-
tach a simple proof in order to make the paper more 
self-contained:

(18)

(19)

which is the j-th moment of f times the nonzero con-
stant (-i)j. Our assumption about f then reads f 0(j)

=t  
for j {0,p 1}! - . This means the Fourier transform 
of f is a trigonometric polynomial which has a zero of 
order p in 0. Thus it can be factorised as

with a suitable (Laurent-) polynomial K. Replacing 
exp(i )p  by z directly yields the desired factorisation  
F(z) = (z - 1)pK(z) of the z-transform.

With the help of this proposition, we can understand 
the convolution with a wavelet as a derivative approxi-
mation of a presmoothed signal. We remember that 
z - 1 is the z-transform of the finite difference matrix DT 
approximating the negated first derivative. Thus (z - 1)p 
can be used as approximation of (-1)p times the p-th de-
rivative. This reasoning of understanding the wavelet as 
a derivative of a smoothing kernel is in accordance with 
the approach in the previous section and the continu-
ous considerations in [9]. For details on such factoriza-
tions, see [21, Section 7.2] for orthogonal wavelets and 
[21, Section 7.4.2] for the biorthogonal case, for exam-
ple. Let p and q be the number of vanishing moments 
of our analysis and synthesis highpass filters H1 and G1. 
Then Proposition 5.1 allows us to write the filters as

(20)

where KH and KG are the z-transforms of two smoothing 
kernels kH and kG of the synthesis and analysis wavelet. 
For orthogonal wavelets, we simply have KH(z) = KG(z) 
and p = q. With the two relations (10) and (11) between 
low- and highpass we see that for the lowpass filters H0 
and G0, the following relations hold:
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To make these formulae a bit more intuitive, let us 
now give some examples of kernels KH and KG for com-
monly used orthogonal wavelets on the finest scale:

Example 5.2 (Discrete Wavelets and Convolution Kernels) 

(a) Haar Wavelet: For the discrete Haar wavelet, we 

have H (z)
2

1 (z 1)1 = - . The kernel on the finest scale is 

in this case just a scalar factor K (z)
2
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 which can be factorised as  
leading to
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Let us briefly say a few words about the differences 
between our idea and previous approaches to relations 
between shrinkage on the finest scale and nonlinear 
diffusion. In contrast to the idea in this paper, Weick-
ert et al. [39] have directly considered the wavelet fil-
ter H1 as stencil for a derivative approximation. With a 
Taylor expansion, one can directly prove that any filter 
with p vanishing moments yields an approximation of 
the p-th derivative up to a constant factor. This works 
well as long as only the finest scale is considered, but 
it does not help to explain what happens on coarser 
scales. Here, we try to model coarser scales by separat-
ing the derivative approximation from the smoothing 
kernel which yields a coarse scale approximation of our 
signal. In the continuous setting considered in [9], the 
smoothing kernel is a function for which the scaling 
operation is invertible without loss of information. In 
contrast to this, the discrete wavelets on coarser scales 
treated in this paper can change their appearance due 
to discretisation effects.

Following [35, Section 3.3], we introduce wavelets on 
coarser scales: starting from the filters G0 and G1 on the 
finest scale, we define the wavelet filters G ( )

0
v  and G ( )

1
v  

on coarser scales N!v  as

(26)

and use the same formulae for H ( )
0
v  and H ( )

1
v .

The exponents 2r come from the fact that the algo-

Fig. 3. Filter bank for translation invariant wavelet 
shrinkage, written with multiple channels.

Now we are interested in the changes of the shape 
of the convolution kernels corresponding to the wave-
lets when the scale increases. Our starting point are the 
relations (26), and we firstly consider the scaling coef-
ficients using the factorisation (23):

(27)

We see that the scaling filter on larger scales can be 
decomposed into four parts: The sign given by ( 1) p

-
v  

and the pure shift z( )2 1-
v

 do not change the shape of the 
convolution kernel. This shape is determined by the right-
most two factors: The second one is a product of the ker-
nels kH with alternating signs and with inserted zeros. This 
is actually the wavelet-dependent part. The first factor is 
independent of the wavelet: It is the p times convolution 
of a box filter of width 2v  with itself. This can be under-
stood as a discrete B-spline kernel of order p.

Let us see how this decomposition looks for the 
wavelet coefficients:
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(30)
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(b) Daubechies Wavelets: The Daubechies wavelet 
[7] with p = 2 is represented by the filter
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rithme à trous inserts the corresponding number of 
zeros between two samples of the filter at scale r. In ad-
dition, we have to multiply the z-transforms of all filters 
lying on the path from the input to the middle of the 
filter bank for Hi in Figure 1, or from the middle to the 
output for Gi, i = 0,1.

Having these formulae at hand we can rewrite the 
filter bank in Figure 1 with m + 1 different paths as 
shown in Figure 3.

and
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Example 5.3 (Haar Wavelet on Coarser Scales) 

We have already seen that for a Haar wavelet we have 

p = q = 1 and the kernels ( ) ( )K z K z
2

1G H
= =  are just 

constants. Thus the wavelet on scale v  can be seen as

(32)

 This means that in complete analogy to the continu-
ous case, the discrete Haar wavelet is the derivative 
approximation of a hat function. This hat is created by 
multiplying a box filter by itself. An example for the 
scale 8v =  is shown in Figure 4.
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Fig. 4. Convolution kernel corresponding to the Haar 
wavelet. a) Haar wavelet on scale 8.  b) Corresponding 

smoothing kernel: a hat function.
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 Let us also analyse the ingredients of this product: 
The first factor (z - 1)q tells us that the wavelet can be 
understood as an approximation of the q-th derivative 
(with sign (- 1)q). It is the z-transform of the finite dif-
ference matrix (DT)q defined above. Again, the sign and 
the shift do not change the shape of the convolution 
kernel. As for the scaling function, we also find a spline 
kernel of order p + q and a wavelet-dependent part.

Let us now give some examples of commonly used 
wavelets to see how the related convolution kernels 
look like:

Example 5.4 (Daubechies Wavelets on Coarser Scales) 

For some representatives of the family of Daubechies 
wavelets [7], we display the corresponding kernels ob-

tained by numerical calculations in Figure 4. One can 
see that the smoothing kernels have a shape similar to a 
Gaussian kernel with a perturbation at the right side where 
they even change the sign. Daubechies has proven that 
the Haar wavelets are the only symmetric or antisymmet-
ric orthonormal wavelets with compact support [7], and 
so it is clear that the corresponding kernels of Daubechies 
wavelets of higher order cannot be symmetric.
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Example 5.3 (Haar Wavelet on Coarser Scales) 

We have already seen that for a Haar wavelet we have 

p = q = 1 and the kernels ( ) ( )K z K z
2

1G H
= =  are just 

constants. Thus the wavelet on scale v  can be seen as

(32)

 This means that in complete analogy to the continu-
ous case, the discrete Haar wavelet is the derivative 
approximation of a hat function. This hat is created by 
multiplying a box filter by itself. An example for the 
scale 8v =  is shown in Figure 4.
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Fig. 4. Convolution kernel corresponding to the Haar 
wavelet. a) Haar wavelet on scale 8.  b) Corresponding 

smoothing kernel: a hat function.
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 Let us also analyse the ingredients of this product: 
The first factor (z - 1)q tells us that the wavelet can be 
understood as an approximation of the q-th derivative 
(with sign (- 1)q). It is the z-transform of the finite dif-
ference matrix (DT)q defined above. Again, the sign and 
the shift do not change the shape of the convolution 
kernel. As for the scaling function, we also find a spline 
kernel of order p + q and a wavelet-dependent part.

Let us now give some examples of commonly used 
wavelets to see how the related convolution kernels 
look like:

Example 5.4 (Daubechies Wavelets on Coarser Scales) 

For some representatives of the family of Daubechies 
wavelets [7], we display the corresponding kernels ob-

tained by numerical calculations in Figure 4. One can 
see that the smoothing kernels have a shape similar to a 
Gaussian kernel with a perturbation at the right side where 
they even change the sign. Daubechies has proven that 
the Haar wavelets are the only symmetric or antisymmet-
ric orthonormal wavelets with compact support [7], and 
so it is clear that the corresponding kernels of Daubechies 
wavelets of higher order cannot be symmetric.
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Fig. 5. Convolution kernels corresponding to 
Daubechies wavelets on larger scales. a), b), c), d): 
Daubechies wavelets of orders 4 and 6 on scales 2 

and 8. e), f ), g), h) Corresponding smoothing kernels. 
The scaling comes from the fact that wavelets are 

normalised with respect to the 
2, -norm.

The following two examples consider the convo-
lution kernels corresponding to biorthogonal filter 
pairs. These filters can be symmetric or antisymmet-
ric with compact support. Hence, the convolution 
kernels can be symmetric.

Example 5.5 (Compactly Supported Spline Wavelets) 

Figure 5 presents the compactly supported spline 
wavelet filters h1 and g1 with 3 and 7 vanishing mo-
ments. Details on these filters can be found in [21, 
p.~271], for example. We see that the corresponding 
kernel to h1 has negative parts while the kernel derived 
from g1 is positive and resembles a Gaussian kernel.
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Fig. 6. Convolution kernels corresponding to 
compactly supported spline wavelets on scale 8.  
a) Filter h1 with 3 vanishing moments.  b) Filter g1 
with 7 vanishing moments.  c), d) Corresponding 

smoothing kernels. 
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Example 5.6 (Perfect Reconstruction Filters of Most 
Similar Length) 

These biorthogonal filters are displayed in Figure 6 
and details can be found in [21, p.~273], for example. The 
filter corresponding to g1 has some small negative parts.
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 0  200  400  600  800 1000 1200 1400 1600 1800
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 0  200  400  600  800 1000 1200 1400 1600 1800

Kernel, sigma=8

Fig. 7. Convolution kernels corresponding to perfect 
reconstruction filters of most similar length on scale 8.  
a), b) Analysis and synthesis filter. c), d) Corresponding 

smoothing kernels.

Regardless of the shape of convolution kernels, it will be 
important for our considerations in the next section that 
we can write the analysis and the synthesis wavelet as

(33)

We use notions K ,( )G v  and K ,( )H v  to denote the cor-
responding convolution kernels on scale v . With the 
finite difference matrices introduced in (14), we can re-
write (33) in matrix notation as

(34)

We will use these equations in the next section to re-
write iterated wavelet shrinkage as discretisation of an 
integrodifferential equation.

6. RELATIONS BETWEEN BOTH METHODS

In this section, let ,f u RN!  be vectors and 
, , 0,1H G i( ) ( )

i i =
v v  denote the N x N circulant ma-

trices corresponding to the filters ( ), ( )H z G z( ) ( )
i i
v v  

modulo   zN - 1. Then we can rewrite wavelet shrink-
age according to Figure 3 as

(35)

 Analysis matrices are transposed to reflect the fact 
that we have used Hi(z-1) for i = 0,1 for the analysis part 
of our filter banks in Figures 1, 2, and 3. The function S 
is meant to act componentwise on the vector entries.

Without shrinking the coefficients, the filter bank will 
allow for a perfect reconstruction, which means that

(36)

for all f RN! . Similarly to [26, 9], we use

(37)

to rewrite our shrinkage function with the help of a 
function g which will play the role of diffusivity later 
on. This leads to pairs of shrinkage functions and dif-
fusivities which are studied in detail in [26]. Inserting 
(37) into (35) we obtain
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Example 5.6 (Perfect Reconstruction Filters of Most 
Similar Length) 

These biorthogonal filters are displayed in Figure 6 
and details can be found in [21, p.~273], for example. The 
filter corresponding to g1 has some small negative parts.
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Fig. 7. Convolution kernels corresponding to perfect 
reconstruction filters of most similar length on scale 8.  
a), b) Analysis and synthesis filter. c), d) Corresponding 

smoothing kernels.

Regardless of the shape of convolution kernels, it will be 
important for our considerations in the next section that 
we can write the analysis and the synthesis wavelet as

(33)

We use notions K ,( )G v  and K ,( )H v  to denote the cor-
responding convolution kernels on scale v . With the 
finite difference matrices introduced in (14), we can re-
write (33) in matrix notation as

(34)

We will use these equations in the next section to re-
write iterated wavelet shrinkage as discretisation of an 
integrodifferential equation.

6. RELATIONS BETWEEN BOTH METHODS

In this section, let ,f u RN!  be vectors and 
, , 0,1H G i( ) ( )

i i =
v v  denote the N x N circulant ma-

trices corresponding to the filters ( ), ( )H z G z( ) ( )
i i
v v  

modulo   zN - 1. Then we can rewrite wavelet shrink-
age according to Figure 3 as

(35)

 Analysis matrices are transposed to reflect the fact 
that we have used Hi(z-1) for i = 0,1 for the analysis part 
of our filter banks in Figures 1, 2, and 3. The function S 
is meant to act componentwise on the vector entries.

Without shrinking the coefficients, the filter bank will 
allow for a perfect reconstruction, which means that

(36)

for all f RN! . Similarly to [26, 9], we use

(37)

to rewrite our shrinkage function with the help of a 
function g which will play the role of diffusivity later 
on. This leads to pairs of shrinkage functions and dif-
fusivities which are studied in detail in [26]. Inserting 
(37) into (35) we obtain
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where U  is a diagonal matrix such that 
( ): (| | )v diag vj j J

2U = ! . By property (36) the first part 
is just a reconstruction of the initial signal f, and we obtain

(39)

for one multilevel shrinkage step. Iterating these multi-
level shrinkage steps leads to the scheme 

(40)

which has a similar structure as the discretisation of the 
nonlinear diffusion equation (15). Using (34), the itera-
tion rule can be written as

(41)

A continuous equivalent, the integrodifferential 
equation 
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with a smoothing kernel iv  and its mirrored version ivu  
has been derived in [9]. It becomes evident that (41) 
can be considered as a discrete version of this integro-
differential equation. As in the continuous case, in our 
discrete setting we also see two differences between 
discrete wavelet shrinkage (41) and nonlinear diffusion 
filtering (15); namely, all derivatives are presmoothed 
and we sum over all scales v . In contrast to continuous 
considerations, we have worked with two different ker-
nels to allow for biorthogonal wavelets. This can lead 
to partial differential equations with different orders of 
the inner and the outer derivative.

In the PDE-based image processing context, similar 
ideas, but without presmoothing, have been used in 
the filters of Tumblin and Turk [32] and Wei [37]. They 
proposed to use evolution equations of the form

(43)

where m is the squared gradient norm or the squared 
Frobenius norm of the Hessian matrix of u. In this respect 
these approaches even go one step further: They do not 
only allow the derivative orders in front of the nonlinear 
function and behind to be different, but the argument 
can also be a third order one, while m depends on first 
or second order derivatives. By the construction (41) this 
is not included in our framework since the argument of 
diffusivity is always the same as its multiplier.

Remark 6.1 (Orthogonal Wavelets) 

In the case of orthogonal wavelets, (41) simplifies to 

(44)

Besides smoothing kernels and the sum over all 
scales, this is identical to an explicit discretisation of 
a higher order nonlinear diffusion equation. Since the 
outer matrices are the adjoints of the inner ones, this 
approach can be understood as arising from an energy 
function of the form

(45)

with ' ( ) ( )s g s2 2W = . Continuous analoga to this 
equation can be found in [9, 4], for example. For bior-
thogonal wavelets such a formulation does not exist. 
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7. GENERALISATION TO HIGHER DIMENSIONS

So far, the ideas in this paper have been considered 

in one spatial dimension only. Let us turn to the two-

dimensional case. For one single scale of Haar wavelet 

shrinkage, relations to nonlinear diffusion equations 

have been discussed by Mrázek and Weickert [25]. Here 

we follow the strategy sketched in [25], but apply it not 

only to one scale of Haar wavelet shrinkage, but to mul-

tiple ones with general biorthogonal filters.

It is common to use tensor product wavelets for pro-

cessing of two-dimensional images; see [21, Subsec-

tions 7.7.2 and 7.7.3] or [13, Section 7.5], for example. 

With the one-dimensional analysis scaling coefficients 

h0 and wavelet coefficients h1, the tensor product anal-

ysis filters hs, hh, hv, and hd  in 2-D read 
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horizontal and vertical coefficients in the argument of 
the shrinkage function and not to shrink the diagonal 
ones at all. Let wh, wv, and wd  stand for wavelet coeffi-
cients in horizontal, vertical and diagonal direction at a 
given scale and position. The corresponding shrinkage 
functions applied to the horizontal, vertical and diago-
nal coefficients can be written as: 

(49)

(50)

In contrast to [24], we avoid the additional factor 4 
in front of the function g here. This factor can be ex-
plained as a compensation of the factor 1/4 appearing 
in (47) and (48) together with the fact that only the fin-
est scale is considered in [24]. We avoid the factor here 
since we work on multiple scales and prefer to use the 
same shrinkage function on all scales.

With these shrinkage functions and the perfect re-
construction property (47), wavelet shrinkage (48) can 
be transformed into 

(51)

Here, ( )
hU
v  and ( )

vU
v  represent a pointwise multiplica-

tion of the wavelet coefficients in horizontal and verti-
cal direction on scale v  with diffusivity g in (49) and 
(50). Note that this diffusivity depends on the sum of 
the squared horizontal and vertical wavelet coefficients 
at the corresponding position and scale. Understood 
as discretisation of an integrodifferential equation, one 
would use it iteratively yielding

(52)

This is a 2-D analogue of (41).

Example 7.1 (Orthogonal Wavelets in 2-D) 

Let us consider the case of orthogonal wavelets, i. e., 
Gh = Hh and Gv = Hv , with p vanishing moments. If we 
neglect presmoothing introduced by the wavelets, the 
shrinkage process is obviously connected to a continu-
ous equation of the form

(53)

(46)

Here, the subscript s stands for a scaling function, h 
for the horizontal, v for the vertical, and d for the diago-
nal wavelet. The same definition applies for the synthe-
sis coefficients with g instead of h. It is a classical result 
that these filters on multiple scales yield a biorthogonal 
family in 2-D. In analogy to (36), the perfect reconstruc-
tion property for m scales in 2-D can be formulated as 

(47)

Then one step of shrinkage reads

 with shrinkage functions Sh, Sv, and Sd applied to the 
corresponding wavelet coefficients.

To give a motivation for using different shrinkage 
functions Sd  in the three directions, we have a look 
at the approximation properties of the wavelet coeffi-
cients in 2-D. Convolution of an image with the filters 
given above can also be understood as a derivative 
approximation with presmoothing where the deriva-
tive order and the smoothing kernel depend on h1 and 
h0. For example, let p be the number of vanishing mo-
ments of h1. Convolution of a discrete image u with hh 
and hv approximates presmoothed p-th derivatives of 
u with shrinkage functions Sh, Sv, and Sd applied to the 
corresponding wavelet coefficients.

To give a motivation for using different shrinkage 
functions Sd  in the three directions, we have a look 
at the approximation properties of the wavelet coeffi-
cients in 2-D. Convolution of an image with the filters 
given above can also be understood as a derivative 
approximation with presmoothing where the deriva-
tive order and the smoothing kernel depend on h1 and 
h0. For example, let p be the number of vanishing mo-
ments of h1. Convolution of a discrete image u with hh 
and hv approximates presmoothed p-th derivatives of u 
in x- and y-direction. The filter hd yields the approxima-
tion of the derivative ux

p
y
p2 2  with additional smooth-

ing. That means this derivative in diagonal direction 
has twice the order than the other ones. This fact sug-
gests to follow the shrinkage rule described in [24] to 
improve rotational invariance. Inspired by nonlinear 
diffusion filtering, it is suggested in [24] to couple the 
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which only considers the derivatives with respect to 
the coordinate axes. For p = 1, this is the classical Per-
ona-Malik equation. For higher derivative orders p > 1, 
it only involves the derivatives of order p in coordinate 
directions and no mixed derivatives.

8. NUMERICAL ExPERIMENTS

In this section we want to investigate experimental-
ly the differences between nonlinear diffusion filter-
ing and our discrete version of the integrodifferential 
equations related to wavelet shrinkage described in 
this paper. These experiments should help to under-
stand the meaning of larger scales for the iterative de-
noising process. As a reference we use nonlinear dif-
fusion filtering since it is equivalent to the integrodif-
ferential equation on the finest scale only, and succes-
sively add larger scales. In 1-D, we perform detailed 
qualitative comparisons for denoising of a signal with 
additive Gaussian noise. Experiments for image sim-
plification in 2-D show that the same effects appear 
for higher spatial dimensions. All implementations 
have been written in C.

Let us first describe our experiments in 1-D: Figure 7 
shows our test signal piecepoly taken from the Wave-
lab library1 and its noisy version with additive Gauss-
ian noise of standard deviation 20.

1 Wavelab is available at http://www-stat.stan-
ford.edu/wavelab/.
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Fig. 8. Test signals. a) Piecewise polynomials signal 
with 1024 pixels. b) With additive Gaussian noise, 

standard deviation 20. .

In our first experiment, we compare the quality of 
presmoothed iterative denoising methods on a single 
scale v  given by the equation

(54)

In our experiments, we have used the order p = 1 
and the hat function as kernel in the matrices KH. As 
we have seen in Section 5, this corresponds to Haar 
wavelets. The kernel length is 2l v= . Moreover, we 
have applied the Perona-Malik diffusivity in the diago-
nal matrix U . Notice that 1v =  corresponds to clas-
sical diffusion filtering. We have used one single scale 
for presmoothing, and thus in contrast to (41), there is 
no sum and no weight factor on the right-hand side. 
The parameters have been optimised in order to obtain 
minimal errors in both the 1, - and 2, -norms. The opti-
mal parameters and the corresponding mimimal error 
measures can be found in Table 0. We see that the mini-
mal errors are obtained for classical nonlinear diffusion 
filters without presmoothing.
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Table 1: Error norms for denoising results with 
presmoothed diffusion and one single scale.

Scale σ l1-error per pixel 

error λ iterations 

1 2.740 1.02 4593 

2 5.087 0.10 247000 

3 6.515 0.10 351000 

To visualise the differences some of the correspond-
ing signals are displayed in Figure 8. It is clearly visible 
that using single-scale presmoothing kernels for all de-
rivatives leads to artefacts. The process is not able to re-
move the noise on the small scales which leads to oscil-
lations. Only the general shape of the signal is restored 
for larger scales. This is in accordance with the results 
reported by Scherzer and Weickert [28].

Scale σ l2-error per pixel 

error λ iterations 

1 0.141 1.67 1265 

2 0.227 0.10 233000 

3 0.285 0.10 263000 

a)

b)
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horizontal and vertical coefficients in the argument of 
the shrinkage function and not to shrink the diagonal 
ones at all. Let wh, wv, and wd  stand for wavelet coeffi-
cients in horizontal, vertical and diagonal direction at a 
given scale and position. The corresponding shrinkage 
functions applied to the horizontal, vertical and diago-
nal coefficients can be written as: 

(49)

(50)

In contrast to [24], we avoid the additional factor 4 
in front of the function g here. This factor can be ex-
plained as a compensation of the factor 1/4 appearing 
in (47) and (48) together with the fact that only the fin-
est scale is considered in [24]. We avoid the factor here 
since we work on multiple scales and prefer to use the 
same shrinkage function on all scales.

With these shrinkage functions and the perfect re-
construction property (47), wavelet shrinkage (48) can 
be transformed into 

(51)

Here, ( )
hU
v  and ( )

vU
v  represent a pointwise multiplica-

tion of the wavelet coefficients in horizontal and verti-
cal direction on scale v  with diffusivity g in (49) and 
(50). Note that this diffusivity depends on the sum of 
the squared horizontal and vertical wavelet coefficients 
at the corresponding position and scale. Understood 
as discretisation of an integrodifferential equation, one 
would use it iteratively yielding

(52)

This is a 2-D analogue of (41).

Example 7.1 (Orthogonal Wavelets in 2-D) 

Let us consider the case of orthogonal wavelets, i. e., 
Gh = Hh and Gv = Hv , with p vanishing moments. If we 
neglect presmoothing introduced by the wavelets, the 
shrinkage process is obviously connected to a continu-
ous equation of the form

(53)

(46)

Here, the subscript s stands for a scaling function, h 
for the horizontal, v for the vertical, and d for the diago-
nal wavelet. The same definition applies for the synthe-
sis coefficients with g instead of h. It is a classical result 
that these filters on multiple scales yield a biorthogonal 
family in 2-D. In analogy to (36), the perfect reconstruc-
tion property for m scales in 2-D can be formulated as 

(47)

Then one step of shrinkage reads

 with shrinkage functions Sh, Sv, and Sd applied to the 
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functions Sd  in the three directions, we have a look 
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which only considers the derivatives with respect to 
the coordinate axes. For p = 1, this is the classical Per-
ona-Malik equation. For higher derivative orders p > 1, 
it only involves the derivatives of order p in coordinate 
directions and no mixed derivatives.

8. NUMERICAL ExPERIMENTS

In this section we want to investigate experimental-
ly the differences between nonlinear diffusion filter-
ing and our discrete version of the integrodifferential 
equations related to wavelet shrinkage described in 
this paper. These experiments should help to under-
stand the meaning of larger scales for the iterative de-
noising process. As a reference we use nonlinear dif-
fusion filtering since it is equivalent to the integrodif-
ferential equation on the finest scale only, and succes-
sively add larger scales. In 1-D, we perform detailed 
qualitative comparisons for denoising of a signal with 
additive Gaussian noise. Experiments for image sim-
plification in 2-D show that the same effects appear 
for higher spatial dimensions. All implementations 
have been written in C.

Let us first describe our experiments in 1-D: Figure 7 
shows our test signal piecepoly taken from the Wave-
lab library1 and its noisy version with additive Gauss-
ian noise of standard deviation 20.

1 Wavelab is available at http://www-stat.stan-
ford.edu/wavelab/.
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Fig. 8. Test signals. a) Piecewise polynomials signal 
with 1024 pixels. b) With additive Gaussian noise, 

standard deviation 20. .

In our first experiment, we compare the quality of 
presmoothed iterative denoising methods on a single 
scale v  given by the equation

(54)

In our experiments, we have used the order p = 1 
and the hat function as kernel in the matrices KH. As 
we have seen in Section 5, this corresponds to Haar 
wavelets. The kernel length is 2l v= . Moreover, we 
have applied the Perona-Malik diffusivity in the diago-
nal matrix U . Notice that 1v =  corresponds to clas-
sical diffusion filtering. We have used one single scale 
for presmoothing, and thus in contrast to (41), there is 
no sum and no weight factor on the right-hand side. 
The parameters have been optimised in order to obtain 
minimal errors in both the 1, - and 2, -norms. The opti-
mal parameters and the corresponding mimimal error 
measures can be found in Table 0. We see that the mini-
mal errors are obtained for classical nonlinear diffusion 
filters without presmoothing.
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Table 1: Error norms for denoising results with 
presmoothed diffusion and one single scale.

Scale σ l1-error per pixel 

error λ iterations 

1 2.740 1.02 4593 

2 5.087 0.10 247000 

3 6.515 0.10 351000 

To visualise the differences some of the correspond-
ing signals are displayed in Figure 8. It is clearly visible 
that using single-scale presmoothing kernels for all de-
rivatives leads to artefacts. The process is not able to re-
move the noise on the small scales which leads to oscil-
lations. Only the general shape of the signal is restored 
for larger scales. This is in accordance with the results 
reported by Scherzer and Weickert [28].

Scale σ l2-error per pixel 

error λ iterations 

1 0.141 1.67 1265 

2 0.227 0.10 233000 

3 0.285 0.10 263000 

a)

b)



12 International Journal of Electrical and Computer Engineering Systems16 International Journal of Electrical and Computer Engineering Systems

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

one scale sigma=1, optimal l1 error

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

one scale sigma=1, optimal l2 error

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

one scale sigma=2, optimal l1 error

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

one scale sigma=2, optimal l2 error

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

one scale sigma=3, optimal l1 error

-150

-100

-50

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

one scale sigma=3, optimal l2 error

Fig. 9.b Denoising results with presmoothed diffusion 
and one single scale σ. Results with optimal 2, -error.  

a) σ = 1.  b) σ = 2.  c) σ = 3.

In our second experiment, we do not only filter with 
one larger scale, but involve all dyadic scales 2lv =  for 
l = 0, ... , k and use (44) for filtering. The corresponding 
optimal error measures are shown in Table 1. We have 
used a time step size 1/2x = . We see that involving 
larger scales does not influence the minimal error as 
severly as in the first experiment. For the 1, -error, it is 
even possible to obtain better values by using k = 2. We 
notice that using only the finest scale requires half the 
number of iterations than in the first experiment: This is 
caused by the additional factor 1/2 in (44) on the finest 
scale which was not present in the last experiment. The 
necessary number of iterations reduces by two orders 
of magnitude by involving larger scales. This can be 
understood as an approximative numerical method for 
speeding up the process.

Table 2: Error norms for denoising results using 
presmoothed diffusion on dyadic scales. 

Largest scale l1-error per pixel 

2kv =  error λ iterations 

k = 0 2.740 1.02  9197 

k = 1 2.824 1.47  1904 

k = 2 2.717 2.39   495 

k = 3 2.791 4.02  153 

k = 4 3.000 6.36  53 

k = 5 3.184 8.95  27 

Fig. 9.a Denoising results with presmoothed diffusion 
and one single scale σ. Results with optimal 1, -error. 

a) σ = 1.  b) σ = 2.  c) σ = 3.

Largest scale l2-error per pixel 

2kv =  error λ iterations 

k = 0 0.140 1.67 2604

k = 1 0.142 2.11 677

k = 2 145.03 3.57 200

k = 3 0.143 4.95 95

k = 4 0.146 5.84 61

k = 5 0.150 6.47 48

a)

b)

c)

a)

b)

c)
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The corresponding signals are shown in Figure 10. We 
see that for larger scales, some smaller artefacts appear. 
Nevertheless, it seems that the presence of smaller scales 
on the right-hand side can help to suppress most of them. 
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Fig. 10.a Denoising results with presmoothed 
diffusion and dyadic scale up to 2kv = .  Results with 

optimal 1, -error. a) k = 0. b) k = 1.  c) k = 2.  d) k = 5. 

Fig. 10.b Denoising results with presmoothed 
diffusion and dyadic scale up to 2kv = . Results with 

optimal 2, -error.  a) k = 0. b) k = 1.  c) k = 2.  d) k = 5. 

In our 2-D experiment, we also display results for 
smoothing on one larger scale and on all dyadic scales. 
For one larger scale, we use the filter
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Fig. 9.b Denoising results with presmoothed diffusion 
and one single scale σ. Results with optimal 2, -error.  

a) σ = 1.  b) σ = 2.  c) σ = 3.

In our second experiment, we do not only filter with 
one larger scale, but involve all dyadic scales 2lv =  for 
l = 0, ... , k and use (44) for filtering. The corresponding 
optimal error measures are shown in Table 1. We have 
used a time step size 1/2x = . We see that involving 
larger scales does not influence the minimal error as 
severly as in the first experiment. For the 1, -error, it is 
even possible to obtain better values by using k = 2. We 
notice that using only the finest scale requires half the 
number of iterations than in the first experiment: This is 
caused by the additional factor 1/2 in (44) on the finest 
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necessary number of iterations reduces by two orders 
of magnitude by involving larger scales. This can be 
understood as an approximative numerical method for 
speeding up the process.

Table 2: Error norms for denoising results using 
presmoothed diffusion on dyadic scales. 
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The corresponding signals are shown in Figure 10. We 
see that for larger scales, some smaller artefacts appear. 
Nevertheless, it seems that the presence of smaller scales 
on the right-hand side can help to suppress most of them. 
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Fig. 10.a Denoising results with presmoothed 
diffusion and dyadic scale up to 2kv = .  Results with 

optimal 1, -error. a) k = 0. b) k = 1.  c) k = 2.  d) k = 5. 

Fig. 10.b Denoising results with presmoothed 
diffusion and dyadic scale up to 2kv = . Results with 

optimal 2, -error.  a) k = 0. b) k = 1.  c) k = 2.  d) k = 5. 

In our 2-D experiment, we also display results for 
smoothing on one larger scale and on all dyadic scales. 
For one larger scale, we use the filter
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(55)

This corresponds to (52) where the factor and the 
sum on the right-hand side are left out. We use p = 1  
and hat functions in the directions of the derivative 
and box filters in the other direction which implements 
tensor product Haar wavelets. Figure 11 shows the re-
sulting images if we fix all parameters and only vary the 
scale. We see that using larger scales only introduces 
artefacts in the image which can be compared to those 
appearing also in a 1-D case.

For involving all scales we directly use (52). Some re-
sults for involving all dyadic scales up to a certain order 
are displayed in Figure 12. Here we see that more and 
more small details are removed by using larger scales 
while the artefacts are suppressed.

Fig. 11. Image simplification results with 
presmoothed diffusion and one single scale σ, Perona-

Malik diffusivity ( ) 1/(1 / )g s s2 2 2m= +  with  
10m = , and stopping time t = 5.  a) Original image, 

512 x 512 pixels.  b) 1v = , c) 2v = ,  d) 3v = .

For involving all scales we directly use (52). Some re-
sults for involving all dyadic scales up to a certain order 
are displayed in Figure 12. Here we see that more and 
more small details are removed by using larger scales 
while the artefacts are suppressed. 
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Fig. 12. Image simplification results with 
presmoothed diffusion, ( ) (1 / )g s s2 2 2 1m= + -  for 

10m = , stopping time t = 20, and dyadic scales up to 
2kv = . a) Original image, 512 x 512 pixels, b) k = 0,  

c) k = 1, d) k = 5. 

9. CONCLUSION

In this paper, we have investigated the relation be-
tween discrete multiscale wavelet shrinkage on the 
one hand and discretised nonlinear diffusion filters of 
arbitrary order and their variational counterparts on 
the other. To this end, we exploited the fact that the 
wavelet transform using wavelets with a finite number 
of vanishing moments represents smoothed derivative 
operators. The resulting discrete integrodifferential 
equations differ from their nonlinear diffusion coun-
terparts by additional presmoothing of derivatives and 
integration over a larger number of scales. The shape 
of the corresponding convolution kernels changes for 
coarser scales in the discrete setting due to sampling. 
We have extended considerations from orthogonal 
to biorthogonal wavelets: Here, the corresponding 
discrete versions of integrodifferential equations are 
no longer related to diffusion equations, but to more 
general PDE models like the methods by Tumblin and 
Turk [32] or Wei [37]. Using tensor product wavelets 
and special shrinkage rules to improve the rotation 
invariance, the relations have been carried over to the 
2-D setting. Numerical experiments have shown that 
presmoothed nonlinear diffusion on one single larger 
scale gives worse results than classical nonlinear diffu-
sion. However, involving all dyadic scales up to a cer-
tain order, as done in wavelet shrinkage, almost keeps 
the good quality and significantly reduces the number 
of required iterations. In this sense, discrete multiscale 
wavelet shrinkage can be understood as a numerical 
method for discrete integrodifferential equations.
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Fig. 12. Image simplification results with 
presmoothed diffusion, ( ) (1 / )g s s2 2 2 1m= + -  for 

10m = , stopping time t = 20, and dyadic scales up to 
2kv = . a) Original image, 512 x 512 pixels, b) k = 0,  

c) k = 1, d) k = 5. 
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