
1

Robot Vision Library – Instructions for Using Point Cloud

Segmentation Tool

Robert Cupec, Emmanuel Karlo Nyarko, Damir Filko

Robotics and 3D Vision Group, J. J. Strossmayer University of Osijek, Faculty of Electrical

Engineering

1. Program overview

The program for segmentation of depth images into approximately convex subsets is a component

of the Robot Vision Library – RVL provided here as a Microsoft Visual C++ solution consisting of

three projects:

 RVLCore – library with basic classes needed for implementation of various image and point

cloud processing tools and visualization of the results;

 RVLPCS – library with classes implementing algorithms for segmentation of depth images.

 RVLPCSdemo – console application representing a demo program for the developed

segmentation tool.

The RVL library is primarily designed for Microsoft Windows. However, although we did not try to

compile and test it in Linux, we assume that this should not be a problem, since the code is written

using the standard C++ language. RVL requires OpenCV 2.0 library. In order to use RVLPCSdemo

program to process depth images acquired on-line with a Microsoft Kinect sensor, OpenNI 2.0 SDK

is required. If OpenNI 2.0 SDK is not available, the program can be used to process depth image

files whose format is described in Appendix A. If you don't want to use OpenNI 2.0 SDK, the line

#define RVLOPENNI in the Platform.h file of RVLCore library must be commented out and the

corresponding library OpenNI2.lib must be excluded from Linker/Input/Additional Dependencies

list of RVLPCSdemo. 3D visualization of the segmented triangular mesh is implemented using the

Visualization Toolkit (VTK), which can be downloaded from http://www.vtk.org. If you don't need

3D visualization and you don't want to install VTK, the line #define RVLVTK in the Platform.h file

of RVLCore library must be commented out and the corresponding libraries OpenNI2.lib must be

excluded from Linker/Input/Additional Dependencies list of RVLPCSdemo. The VTK libraries

which must be excluded are all libraries from Linker/Input/Additional Dependencies list whose

name begins with "vtk" as well as the library "opengl32.lib". For both libraries OpenCV and VTK,

environment variables must be defined. The required environment variables are given in Table 1.

Table 1. Environment variables which must be defined

Library Variable name Value

OpenCV OPENCV20 path to the OpenCV folder

VTK VTK_PATH path to the VTK folder

How to define the environment variables on Windows 8 is explained in Appendix B.

http://opencv.org/downloads.html
http://www.openni.org/openni-sdk/
http://www.vtk.org/

2

Alternatively to using environment variables, the user can manually set relative (or absolute) paths

to the required libraries in configuration options for all included projects in the solution. The user

needs to modify the compiler (C/C++) configuration of all three projects, RVLCore, RVLPCS,

RVLPCSdemo, by inserting paths to Additional Include Directories that correspond to the include

directories of OpenCV, OpenNI and VTK libraries. Additionally, the user must modify linker

configuration of RVLPCSdemo project and insert paths to Additional Library Directories that

correspond to the library directories of OpenCV, OpenNI and VTK libraries. Furthermore before

starting the RVLPCSdemo application users should copy library dll files to the application directory

or the Windows system32 directory.

The highest resolution the current implementation of RVL supports is 640 × 480. It also supports

lower resolutions. The default resolution is 320 × 240, which means that the image acquired by the

Kinect sensor, whose original size is 640 × 480 is automatically subsampled to 320 × 240. The

resolution can be specified by changing the program parameters StereoVision.Width and

StereoVision.Height defined in the configuration file RVLPCSdemo.cfg located in the RVLPCSdemo

directory. The resolution specified in the RVLPCSdemo.cfg file must be compatible with the

parameter StereoVision.Kinect.Scale defined in the same file. The values of the parameter

StereoVision.Kinect.Scale for different resolutions are given in Table 2.

Table 2. Values of the parameter StereoVision.Kinect.Scale for different image resolutions.

Resolution StereoVision.Kinect.Scale

640 × 480 1

320 × 240 2

160 × 120 4

The application of RVL tools is explained in the following through the description of the

RVLPCSdemo program. The structure of the program is show in Fig. 1.

The program starts by creation and initialization of an instance of the CRVLPCSVS class using the

commands

CRVLPCSVS VS;

 VS.CreateParamList();

 VS.Init("RVLPCSdemo.cfg");

This class initializes all tools needed for the considered task and performs memory management.

During this initialization, the parameters of all tools are read from the RVLPCSdemo.cfg file.

Furthermore, Kinect sensor is initialized by the following command

 VS.m_Kinect.Init();

After the initialization, the depth image acquisition and processing loop is performed cyclically in a

loop which stops when the Esc key is pressed. A cycle starts by depth image acquisition. If a Kinect

sensor is connected, the depth image is provided by this sensor.

3

Fig. 1 Structure of RVLPCSdemo.

The image acquisition is performed using the following commands

 RVLDISPARITYMAP *pDepthImage = &(VS.m_StereoVision.m_DisparityMap);

 int w = pDepthImage->Width;

 int h = pDepthImage->Height;

 IplImage *pRGBImage = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, 3);

 IplImage *pGSImage = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, 1);

 VS.m_Kinect.GetImages(pDepthImage->Disparity, pRGBImage, NULL, pGSImage);

If Kinect is not connected, the depth image is read from a file using the following command

 RVLImportDisparityImage(VS.m_ImageFileName, pDepthImage);

The depth image file name is initially read from the RVLPCSdemo.cfg file, where it can be specified

by the user by setting VS.ImageFileName parameter. From the input depth image, a triangle mesh is

created using the recursive Delaunay triangulation refinement procedure proposed by Schmitt and

Chen [1]. The resulting mesh is stored in VS.m_AImage representing an instance of the

CRVLAImage class used in RVL for storing the results of various image processing tools. Before

executing the mesh building process, VS.m_AImage must be cleared from the data obtained in the

previous cycle using the command

Initialization

Depth image

acquisition

Create triangle mesh

Segment triangle

mesh into approx.

convex subsets

Display results

4

 VS.m_AImage.Clear();

The depth information stored in VS.m_StereoVision.m_DisparityMap is then converted into an

organized 3D point cloud using the command

 VS.m_PSD.GetPointsWithDisparity(pDepthImage);

After that, mesh building is performed by executing the following command

 VS.m_PSD.Segment(&(VS.m_AImage.m_C2DRegion),&(VS.m_AImage.m_C2DRegion2),&(

VS.m_AImage.m_C2DRegion3),&(VS.m_Mem));

The result of this command is a triangle mesh representing the input depth image, where the

maximum deviation of the image points from the triangles of the obtained mesh is given by the

triangulation tolerance specified by the PSD.STRM.uvdTol parameter in the RVLPCSdemo.cfg

file. This triangle mesh is a useful representation itself and it can be used not only to detect

approximately convex objects, as discussed herein, but also for some other segmentation

approaches. The format of the triangle mesh provided by RVL is given later in this document. The

computed mesh is then segmented into approximately convex sub-meshes, referred to in this

document as segments, by applying the algorithm proposed in [2]. This algorithm is executed by the

following command

 nObjects = RVLSegmentToConvex(&(VS.m_AImage.m_C2DRegion), NULL,

&(VS.m_AImage.m_C2DRegion2), VS.m_ConvexSegmentThr, w, h,

VS.m_PSD.m_Point3DMap, &(VS.m_Mem));

This command assigns a label to each triangle of the mesh. Triangles which are assigned the same

label belong to the same segment. The segmentation depends on the parameter representing the

maximum allowed distance of mesh vertices from the convex hull of a segment. This parameter can

be specified by the user by setting the value Segmentation.Convex.Thr in the RVLPCSdemo.cfg file.

The results are displayed using the graphical user interface of RVL implemented by the class

CRVLGUI.

2. Display Control

RVLPCSdemo allows the user to control the display of the results and change the parameters of the

algorithm by pressing certain keys. The functions assigned to a particular key pressed are

 m - switch the mesh display on/off;

 s - switch the segmentation display on/off;

 v - activate 3D visualization;

 p - save 3D model created using VTK to a file in PLY-format in the RVLPCSdemo

folder;

 b - switch between depth, RGB and grayscale image (only in the on-line mode

with a Kinect connected to the PC);

5

 c - switch between the continuous and the image-by-image mode (in the image-

by-image mode the user must press a key in order for the next image to be

processed);

 z - switch between the original image size and the double size;

 r - switch the record mode on/off (in the record mode, the images acquired by the

Kinect sensor are stored in files; no processing is performed);

 - increase ;

 - decrease ;

 - increase ;

 - decrease .

 Esc - quit the demo.

In addition to the execution time, the values of the parameters and are also displayed. The

parameter is denoted by "TT" on the display window and by "CT".

3. Output data

Triangle Mesh

The triangle mesh created by the function VS.m_PSD.Segment consists of triangles stored in the list

VS.m_AImage.m_C2DRegion.m_ObjectList. The mesh triangles are represented by instances of

the class CRVL2DRegion2 which can be accessed as illustrated by the following sample code.

 CRVL2DRegion2 *pTriangle;

 VS.m_AImage.m_C2DRegion.m_ObjectList.Start();

 while(VS.m_AImage.m_C2DRegion.m_ObjectList.m_pNext)

 {

 pTriangle = (CRVL2DRegion2 *)(

 VS.m_AImage.m_C2DRegion.m_ObjectList.GetNext());

 // pTriangle is a pointer to an instance of the class

 // CRVL2DRegion2 representing a mesh triangle.

 // Now you can do whatever you want with the triangle.

 }

6

The parameters of the class CRVL2DRegion2 which are relevant for the considered application are

explained in the following.

 m_Flags - Some triangles generated in the mesh building process are marked as

rejected by setting the RVLOBJ2_FLAG_REJECTED flag. This flag is set

in the following cases:

 if the percentage of the pixels within the triangle with assigned depth

is lower than the threshold which can be specified by setting the

PSD.STRM.MinTriangleFillPerc parameter in the RVLPCSdemo.cfg

file;

 if the triangle stretches over a depth discontinuity.

 m_PtArray - a pointer to a reference mesh link of the triangle;

 m_Label - the label of the segment to which the triangle belongs;

The flag RVLOBJ2_FLAG_REJECTED can be evaluated as in the following example.

 If(pTriangle->m_Flags & RVLOBJ2_FLAG_REJECTED)

 {

 // the code which should be executed for a triangle marked as

 // rejected

 }

The triangles of a mesh generated by the considered mesh building process are represented by links.

Each triangle is defined by three vertices connected by edges. Each edge is assigned two vectors

referred to in this document as links. The initial point of each of these two vectors is one of the

endpoints of the considered edge, while its terminating point is the other endpoint of the edge. An

example is shown in Fig. 2, where the links assigned to the edge 0 2P P representing a side of the

grey triangle T0 are depicted by the red and the blue arrow.

Fig. 2 Triangle T0 (gray) defined by the vertices P0, P1 and P2 and links denoted by the red, green and blue arrow

0P

2P

0T

1P

u

v

image
coordinate

system

7

Links are represented by the data structures RVLMESH_LINK with the following fields

 iPix0 - the index of the pixel representing initial point of the link;

 du, dv - the components of the vector corresponding to the link;

 pOpposite - the pointer to the opposite link corresponding to the same edge;

 pNext - the pointer to the next link in the clockwise direction having the same initial

point;

 pPrev - the pointer to the previous link in the clockwise direction having the same

initial point;

 vp2DRegion - the pointer to the triangle on the right side of the link with respect to the link

direction;

For example, the opposite link of the red link in Fig. 2 is the one represented by the blue arrow and

the next link of the red link in the clockwise direction is represented by the green arrow. The red

link is the previous link of the green link. If u and v are the coordinates of a pixel in the image

coordinate system shown in Fig. 2, then the pixel index is computed as u + v · w, where w is the

image width. For each triangle in a mesh, there are three links related to it by their pointers

vp2DRegion. One of them is the reference link of the triangle. The parameter m_PtArray of a

triangle represents the pointer to the reference link of this triangle. The following code illustrates

how all vertices of a triangle can be accessed given the pointer pTriangle to the considered triangle

and the image width w.

 RVLMESH_LINK *pLink = (RVLMESH_LINK *)(pTriangle->m_PtArray);

 int u1 = pLink->iPix0 % w;

 int v1 = pLink->iPix0 / w;

 pLink = pLink->pNext->pOpposite;

 int u2 = pLink->iPix0 % w;

 int v2 = pLink->iPix0 / w;

 pLink = pLink->pNext->pOpposite;

 int u3 = pLink->iPix0 % w;

 int v3 = pLink->iPix0 / w;

The image coordinates of the vertices of the considered triangle are (u1, v1), (u2, v2) and (u3, v3).

The following code illustrates how the adjacent triangles of a given triangle can be accessed. Let

pTriangle be a pointer to a triangle T0. The following code provides pointers

pAdjacentTriangle1, pAdjacentTriangle2 and pAdjacentTriangle3 to three triangles which

share the same side with T0.

 RVLMESH_LINK *pLink = (RVLMESH_LINK *)(pTriangle->m_PtArray);

 pLink = pLink->pNext;

8

 CRVL2Dregion2 *pAdjacentTriangle1 = (CRVL2Dregion2 *)(pLink-> vp2DRegion);

 pLink = pLink->pOpposite->pNext;

 CRVL2Dregion2 *pAdjacentTriangle2 = (CRVL2Dregion2 *)(pLink-> vp2DRegion);

 pLink = pLink->pOpposite->pNext;

 CRVL2Dregion2 *pAdjacentTriangle3 = (CRVL2Dregion2 *)(pLink-> vp2DRegion);

One of the links assigned to the sides of a triangle is the reference link of the triangle.

The image points inside a triangle can be determined using the member function

GetPtsInConvexPolygon of the class CRVLDelaunay. The following code computes the coordinates

of all points inside a triangle addressed by the pointer pTriangle.

 int iFirstScanLine, iLastScanLine, iScanLine;

 int u, v, iPix;

 RVLMESH_LINK *pLink = (RVLMESH_LINK *)(pTriangle->m_PtArray);

 VS.m_pDelaunay->GetPtsInConvexPolygon(pLink, VS.m_PSD.m_iScanLineStart,

 VS.m_PSD.m_iScanLineEnd, iFirstScanLine, iLastScanLine);

 for(iScanLine = iFirstScanLine; iScanLine <= iLastScanLine; iScanLine++)

 for(iPix = VS.m_PSD.m_iScanLineStart[iScanLine];

 iPix <= VS.m_PSD.m_iScanLineEnd[iScanLine]; iPix++)

 {

 u = iPix % w; // w is the image width

 v = iPix / w;

 // (u, v) are the coordinates of a point inside the triangle

 // addressed by the pointer pTriangle.

 }

Another way to get the points assigned to a triangle is using the member variable m_2DRegionMap

of the CRVLPlanarSurfaceDetector class. The following code illustrates how to access the triangle

containing a point with coordinates u and v given the image width w.

 CRVL2Dregion2 *pTriangle = VS.m_PSD.m_2DRegionMap[u + v * w];

If no triangle contains the considered image point, pTriangle has value NULL.

Approximately Convex Segments

As a result of the segmentation process following the mesh building, each triangle is assigned a

label corresponding to the approximately convex segment to which the triangle belongs. Each

segment is assigned a unique label and all triangles belonging to this segment are assigned the same

9

label stored in the triangle parameter m_Label. The following code illustrates how to get the label of

the segment containing a point with coordinates u and v.

 CRVL2Dregion2 *pTriangle = VS.m_PSD.m_2DRegionMap[u + v * w];

 DWORD Label = (pTriangle ? pTriangle->m_Label : -1);

If no segment contains the considered image point, the variable Label is set to -1.

3D Data

Each image point with a valid depth is assigned 3D coordinates relative to the Kinect reference

frame in millimeters. The following code illustrates how to get the 3D coordinates x, y, and z of the

image pixel with coordinates u and v in the image coordinate system.

 double *P = VS.m_PSD.m_Point3Dmap[u + v * w]->XYZ;

 double x = P[0];

 double y = P[1];

 double z = P[2];

It should be noted here that these coordinates in millimeters are computed using the intrinsic camera

parameters: focal lengths fu (horizontal) and fv (vertical) as well as the coordinates of the principal

point uc and vc. By default, the program uses the values which worked rather well with our Kinect

sensor. Nevertheless, if you have some better values, obtained by some calibration procedure for

your particular Kinect sensor, you can use your parameters by entering their values in the

RVLPCSdemo.cfg file. The intrinsic camera parameters in the RVLPCSdemo.cfg file are denoted by

StereoVision.Kinect.fu, StereoVision.Kinect.fv, StereoVision.Kinect.uc and StereoVision.Kinect.vc.

References:

[1] F. Schmitt and X. Chen, Fast segmentation of range images into planar regions, in Proceedings of the IEEE

Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), 1991, pp. 710-711.

[2] R. Cupec, E. K. Nyarko, D. Filko, Fast 2.5D Mesh Segmentation to Approximately Convex Surfaces, Proceedings

of the 5th European Conference on Mobile Robots, pp. 127-132, Örebro, Sweden, 2011 (PDF)

Appendix A: Input file format

The format of the input depth image file is described in the following. The first line starts with the

word "width" followed by a space and the number representing the image width in pixels. The

second line starts with the word "height" followed by a space and the number representing the

image height. The third line represents the depth format. It can be either "1mm", denoting that the

depth is represented in millimeters, or it can be empty, denoting the raw depth code, which is

something analogous to disparity value in stereo vision systems. The other lines represent the depth

data. Each line represents an image row consisting of integer depth values separated by a space.

http://aass.oru.se/Agora/ECMR2011/proceedings/papers/ECMR2011_0060.pdf

10

Appendix B: Defining environment variables

The procedure for defining the environment variables on Windows 8 is described in the following.

1. On the desktop, move the mouse to the bottom-left corner of the screen.

2. Select "Settings" "Control panel" "System" "Advance system settings"

"Environment variables".

3. In the list "User variables" enter the user variable name and the path of the considered

library.

4. Confirm your entry by clicking on "OK".

	AppendixA
	AppendixB

